

A HIERARCHICAL TEST CASE PRIORITIZATION TECHNIQUES FOR

ASPECT-ORIENTED SOFTWARE

1SUSHIL KUMAR & 2NARESH CHAUHAN
1Assistant Professor (Deptt of Computer Engg), YMCA University of Science & Technology, Faridabad

Haryana- 121006, India.
2Professor (Deptt of Computer Engg.), YMCA University of Science & Technology, Faridabad

Haryana - 121006, India.

ABSTRACT

Aspect Oriented Programming is a new paradigm for developing software. It is the way to

modularize the cross-cutting concerns. As it is in its evolving phase it poses some challenges, one of

which is testing AO programs. As there are some basics differences between AOP and OOP, there is need

of new testing approach for AO programs. One of the approaches used to test AO programs is state-

based incremental testing. Testing of aspect(s)-class block is done incrementally. As the aspects are

incremented there is need of regression testing with the objective to ensure that the integration is done

without affecting the original behaviour of the class.

One of the major problems encounter during state-based incremental testing is: as the number of

aspects to be added increases, the number of test cases on which regression testing has to be performed

also increases exponentially. This scenario leads to exhaustive testing which is both impractical and

inefficient.

In the work presented a new framework for state-based incremental testing of Aspect Oriented

Program has been proposed. As the focus of the work is improving the efficiency of regression testing

performed therefore a new algorithm, Hierarchical Test Case Prioritization(HTCP) in State-based

Incremental Testing for Aspect Oriented Programs has been proposed. HTCP takes hierarchical

prioritization into consideration with the goal of maximizing the rate of fault detection at first level and at

the second level goal is to increase the rate of detection of high-risk faults, locating those faults earlier in

the testing process. Evaluation and Analysis of the framework has been performed using Average

Percentage of Faults Detection (APFD) metric. The analysis is done by comparing the Prioritization Test

Suite, which is the result of proposed HTCP algorithms and Non-prioritized test suite.

KEYWORDS: AOP, APFD, AO, HTCP, OO, OOP

INTRODUCTION

Aspect Oriented Programming (AOP) is a new paradigm having foundations on OOP. AOP is

based on the idea that concerns crosscutting several modules of an application can be developed as single

unit of modularity and weaved into application, through a process of composition, using join points (a

International Journal of Computer Science
and Engineering (IJCSE)
Vol.1, Issue 1 Aug 2012 55-64
© IASET

Sushil Kumar & Naresh Chauhan 56

construct of AOP). AOP offers a way of dealing with system behavior which does not fit cleanly into the

programming models currently being used in the industry. The system behavior that cannot be

encapsulated in classes because of its impact across the whole system is called crosscutting behavior

AOP encapsulates this kind of behavior in aspects.

AOP offers a way of dealing with system behavior which does not fit cleanly into the

programming models currently being used in the industry. The system behavior that cannot be

encapsulated in classes because of its impact across the whole system is called crosscutting behavior.

Aspect Oriented Programming (AOP) is a new paradigm having foundations on OOP. AOP is

based on the idea that concerns crosscutting several modules of an application can be developed as

single unit of modularity and weaved into application, through a process of composition, using join

points

There are two scenarios in which aspects can be defined.

1. In one scenario the aspects are the result of refactoring and aggregating the common code from

primary abstraction in one place i.e. aspect

2. In second scenario which is inverse of first, and is the area of concern , aspect is defined

independently with respect to crosscutting concern that is not present in primary abstraction(e.g.

synchronization or security policy)

Testing is an essential part of software development process that ensures software correctness

There exist several testing techniques of different types such as unit testing, integration testing,

system testing and others. These and other techniques have been developed, researched and applied on

different programming paradigms

AOP is relatively new programming paradigm and aspect oriented (AO) programs provides

different characteristics which differ from OO programs. There are new challenges regarding testing due

to some characteristics of aspects, like dependency on the context of classes, tight coupling to class etc.

AOP cannot be addressed using traditional unit or integration test techniques, these techniques

are applicable to class that implement core concerns but not applicable to aspects because aspect depend

on woven context.

AREA OF CONCERN

In the second scenario defined above aspect is defined independently with respect to

crosscutting concern that is not present in primary abstraction e.g. synchronization. Class and methods of

primary concerns are developed and tested as before using object oriented programming paradigm

however, code regarding cross-cutting concerns is not embedded into bodies of methods instead it is

contained in separately defined aspects.

 Later aspects are woven with classes and it results in woven program composite of behavior of

57 A Hierarchical Test Case Prioritization Techniques for Aspect-Oriented Software

both core concerns and cross-cutting concerns. here aspects are introduced as a result of change in

requirement or addition of a new feature to already developed software. State-based incremental testing

technique has been chosen for testing the aspect(s) - class blocks. In this approach to testing aspect-

oriented programs, first UML statechart diagram of the class under test is developed and then converted

into transition tree and testing of the class is done separately based on test sequences generated from

transition tree. Then the statechart diagram is extended to incorporate the aspect that has been

incremented to the class and extended transition tree is generated for both classes of the core concern and

aspects of the crosscutting concern, which implies a test suite for adequately testing object behavior and

interaction between classes and aspects in terms of message sequences.

PROBLEM IDENTIFICATION

As the aspects are woven with class incrementally there is the need of regression testing. The

Regression testing is done with the objective to ensure that the interaction of aspect and class have not

affected the original behavior of class. Regression testing is also done in case of a change instantiated on

a class or on one of its related aspects.

As the integration of aspects proceeds, a major problem that is encountered is, exponential

growth of test cases this problem becomes acute in case of regression testing. This problem leads to

exhaustive testing. Therefore there is a need to provide the solution for the problem so that efficiency of

testing and overall quality of the software could be improved.

ISSUES

Some of the major issues that need to be taken care of, while providing solution to the problem, are:

1. Aspects do not have independent identity or existence. They depend upon the context of some

other class for their identity and execution context.

2. Aspect implementation can be tightly coupled to their woven context. Aspects depend on the

internal representation and implementation of classes into which they are woven. Changes to

these classes will likely propagate to the aspects[2].

3. When a failure occurs, the first challenge is to diagnose the failure and detect the fault. For non-

aspect oriented programs, one examines the code and possibly instruments it with probes to

isolate and localize a fault. Dealing with failures in aspect-oriented programs requires a similar

approach. However, to detect a fault in an AOP, the code of the woven aspects must also be

examined.[2]

PROPOSED FRAMEWORK FOR STATE BASED INCREMENTAL TESTING IN AOP

In this paper a new framework has been proposed for the state-based incremental testing in

AOP. Framework consists of algorithm for test case prioritization. Hierarchical prioritization has been

taken into consideration with the goal of maximizing the rate of fault detection at first level and at second

level increase the rate of detection of high-risk faults, locating those faults earlier in the testing process.

Sushil Kumar & Naresh Chauhan 58

Hierarchical Test Case Prioritization (HTCP) Algorithm

The framework presented in this work implements a new

Test Case Generation for base
element & Unit testing

Generate Test Suite Te (i)
for Aspect(s) - class block

 Generate Test Suite Td (i)

(Dirty test) for Aspect(s) -
class block

Test the Aspect(s) – class block
on Te (i) and Td (i)

Perform regression testing on
Tu

Applying Hierarchical TCP
Algorithm & adding new
prioritized test cases to Tu

59 A Hierarchical Test Case Prioritization Techniques for Aspect-Oriented Software

EVALUATION AND ANALYSIS

As the aspects are woven with class incrementally there is the need of regression testing. As

the integration of aspects proceeds, a major problem that is encountered is, exponential growth of test

cases this problem becomes acute in case of regression testing. This problem leads to exhaustive testing.

Therefore there is a need to provide the solution for the problem so that efficiency of testing and overall

quality of the software could be improved.

A new framework has been proposed for the state-based incremental testing. Framework

consists of prioritization algorithm. Hierarchical prioritization has been taken into consideration with the

goal of maximizing the no of fault detection at first level and at second level increase the rate of

detection of high-risk faults, locating those faults earlier in the testing process.

Here evaluation of the proposed framework has been by applying it on example of Stack class and

Input: Test suite Tb, Te(i), Td(i) , number of

faults due to part of code affected by join

points fj, detected by each test case and total

number of faults detected ft.

Output: Prioritized Test suite Tp.

begin

2. set Tp empty

sort Td(i) in descending order based on the

value fj of each test case

if more than one test case in Td(i) have same

values of fj

 then decide the priority on the values

of ft

sort Te(i) in descending order based on the

value fj of each test case

if more than one test case in Te(i) have same

values of fj

 then decide the priority on the values

of ft

Tp = { Td(i) , Te(i) }

Adding Tp to Tu

Applying first level prioritization to Tu

ends

Sushil Kumar & Naresh Chauhan 60

StackAspect aspect. Analysis of framework has been done by using the APFD metrics.

EVALUATION

 For evaluating the proposed frame work, considered a class Stack that implements stack of

integer type. The class contains the following methods and variables:

1. Stack [Constructor to create an Stack class instance which is initially empty]

2. Push [this method is used to insert an item on the top of stack]

3. Pop. [this method returns the item from the top of stack]

4. cur_pos is the variable which is used to index the top of stack

5. Max is variable whose value shows the size of stack

6. item is variable whose value is input to stack

7. Stack can be one of the following states

8. Empty Stack if cur_pos = = -1 [it shows initial position]

9. Stack Not Full if 0 <= cur_pos < Max-1

10. Stack Full if cur_pos = = Max - 1

State Chart Diagram of the Stack Class

[cur_pos<Max-1]/push [else]/pop

[cur_pos==0]/pop [else]/push

 pop

 push

Stack

Statechart Of Simple Stack Class

ANALYSIS

 The performance of the framework proposed, depends on the effectiveness of the prioritization

algorithm, HTCP, proposed in the framework so it is necessary to analyze the effectiveness. The APFD

metric is used to analyze the effectiveness.

Stack not full

Empty stack Stack full

61 A Hierarchical Test Case Prioritization Techniques for Aspect-Oriented Software

Graphical analysis

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90
100

Percentage of test suite executed

P
er

ce
n

ta
g

e
o

f
F

au
lt

s
d

et
ec

te
d

fig 1 APFD Graph for Non Prioritized Test Suite

0

20

40

60

80

100

120

0 20 40 60 80 10
0

PERCENTAGE OF TEST SUITE EXECUTED

P
E

R
C

E
N

T
A

G
E

 O
F

 F
A

U
LT

S
 D

E
TE

C
T

E
D

fig 2 APFD Graph for Prioritized Test Suite

 The comparison drawn between prioritized and non-prioritized case, shows that the value obtained

for the prioritized test suite (Tp) which is resultant of the new approach is more than non prioritization

approach, hence proposed algorithms effective.

Sushil Kumar & Naresh Chauhan 62

 To analyze the results more clearly graphs has been plotted for percentage of faults detected vs.

percentage of test suite executed. Graphs have been plotted for both Prioritization approach and for non

prioritization approach. So that results could be compared.

 As it can be seen from the graphs(refer Fig. 1) itself that for Prioritized Test Suite 100% of

faults were detected when only 30 % of test suite got executed whereas in case of Non Prioritized test

suite(refer Fig 2) 100% of faults were detected when 60% of Non- Prioritized Test Suite got executed.

Therefore it can be concluded that proposed algorithm Hierarchical Test Case Prioritization for State

based testing in Aspect-Oriented Software, is effective as compared to non prioritized test suite.

CONCLUSIONS & FUTURE WORK

In the work presented, a new framework has been proposed for incremental state based testing

of Aspect Oriented Programs (AOP). The framework focuses on the integration of one or several aspects

to a class. The objective is to ensure that the integration is done without affecting the original behavior of

the class. In present work Java and AspectJ has been used as implementation language. The approach is

based on state-based incremental testing of aspect(s)-class block. This leads to regression testing

approach. After the each aspect added to the class test cases are generated to test the behavior of the class

and added aspect it should behave as intended. The test cases are generated on the basis of Transition

Tree.Regression testing is also performed on previously generated test cases to ensure that the integration

is done without affecting the original behavior of the class. But as the number of aspects to be added

increases the number of test cases on which testing has to be performed also increases exponentially.

This problem becomes acute in case of regression testing.

To overcome the problem of exponential growth of test cases, an algorithm for test case

prioritization, Hierarchical Test Case Prioritization (HTCP) has been proposed. This algorithm is

designed keeping in mind the environment and issues related to aspect oriented programs. Hierarchical

prioritization is done at three levels. Objectives of prioritization are to maximize the number of fault

detected and to increase the rate of detection of high-risk faults, locating those faults earlier in the testing

process.

The proposed framework has been evaluated using the example of a class and weaving it with

one aspect. To analyze the effectiveness of the proposed prioritization algorithm, Hierarchical Test Case

Prioritization, in an observable manner a metric called Average Percentage of Faults Detected(APFD)

developed by Elbaum [3,4,5], is used. The APFD measures the average rate of fault detection per

percentage of test suite execution. It is calculated by taking the weighted average of the number of faults

detected during the run of the test suite.

 The proposed algorithm results in highly prioritized test suite, which has been found

effective as compared to non prioritized test suite. Further the results have been analyzed by plotting the

graphs for percentage of faults detected vs. percentage of test suite executed. The comparison has been

done between the proposed HTCP and Non prioritized test suite.

63 A Hierarchical Test Case Prioritization Techniques for Aspect-Oriented Software

The work can be expanded as a future work in the following ways:

• Proposed framework has not taken into consideration AOP constructs such as introduction,

aspect inheritance, and aspect composition. The proposed framework could be modified to

incorporate these constructs of the Aspect-Oriented Programming.

• Since the proposed framework has been evaluated using a Toy example, the proposed

framework can be evaluated using a real time software in the industry. The empirical results

collected thereof may expose new problems and challenges in aspect oriented software.

REFERENCES

1. Dianxiang Xu, Weifeng Xu and Kendall Nygard: “A State-Based Approach to Testing Aspect-

Oriented Programs”, In Proc. of the 17th International Conference on Software Engineering and

Knowledge Engineering (SEKE'05), July 14-16, Taiwan.

2. Roger T. Alexander, James M. Bieman and Anneliese A. Andrews: “Towards the Systematic

Testing of Aspect-Oriented Programs”, Department of Computer Science, Colorado State

University, Fort Collins, Colorado, USA. Technical Report CS-4-105, March 2004.

3. Alexey G. Malishevsky, Joseph R. Ruthruff, Gregg Rothermel, Sebastian Elbaum, “Cost-

cognizant Test Case Prioritization”, 2006.

4. S. Elbaum, A. Malishevsky, and G. Rothermel “Test Case Prioritization: A family of empirical

studies”. IEEE Transactions on Software Engineering, Feb 2002.

5. S. Elbaum, Gregg Rothermel, Satya Kanduri, Alexey G. Malishevsky: Selecting a Cost-Effective

Test Case Prioritization Technique”, April 2004.

6. Roger S. Pressman, Software Engineering a practitioner’s approach 6/e, 2005

7. H. Ossher and P. Tarr,” Multi-dimensional separation of concerns and the In Software

architectures and Component Technology: The Hyperspace approach”, 2000. State of the Art in

Research and Practice.

8. A. Restivo and A. Aguiar, “Towards Detecting and Solving Aspect Conflicts and SPLAT’07,

Vancouver, British Columbia, Canada, Interferences Using Unit Tests”, ACM, 2007.

9. R. T. Alexander and James M. Bieman, “Challenges of Aspect-oriented Workshop on Software

Quality (WoSQ’2002), Orlando, Florida, ACM, Technology”, 2002.

10. E. Baniassad and S. Clarke, “Theme: An Approach for Aspect-Oriented Analysis In Proceedings

of International Conference on Software Engineering and Design”, 2004, IEEE Computer

Society. (ICSE '04)

11. G. Kiczales, et al. “An Overview of AspectJ”, In 15th European conference on Object-Oriented

Programming, Budapest, Hungary, 2001.

Sushil Kumar & Naresh Chauhan 64

12. Aida Atef Zakaria, Dr. Hoda Hosny and Dr. Amir Zeid: “A UML Extension for Modeling Aspect-

Oriented Svstems”, Second International Workshop on Aspect-Oriented Modeling with UML

.Dresden, Germany, 2002.

13. M. L. Bernardi and G. A. D. Lucca, “Testing Aspect Oriented Programs: an “Approach Based

on the Coverage of the Interactions among Advices and Methods”, In Proceedings of Sixth

International Conference on the Quality of Information and Communications Technology

(QUATIC’07), Lisbon, IEEE, 2007.

14. S. A. A. Naqvi, S. Ali and M. U. Khan “An Evaluation of Aspect Oriented Testing International

Conference on Emerging Technologies, Techniques”, In Proceedings of Mohammad Ali Jinnah

University, Islamabad, Pakistan, IEEE, September, 2005.

